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Abstract—Mismatch and Common Mode Rejection Ratio
(CMRR) are becoming a concern in biopotential signal processing
circuits in the application of weak signal acquisition using low-
power and low-voltage design techniques. Proper tools are needed
to quickly locate the sensitive mismatch components to improve
the matching quality and CMRR. This paper proposes a symbolic
sensitivity based technique that can help quickly localizethe
mismatch-sensitive components and suggest intuitive guide for
resizing. Example is given to justify the validity of the proposed
method.

Index Terms—Mismatch, common mode rejection ratio
(CMRR), Monte Carlo analysis, symbolic sensitivity.

I. I NTRODUCTION

Common mode rejection ratio (CMRR) is a measure of
an operational amplifier’s (opamp’s) capability in rejecting
common-mode signal in differential operation. A differential
opamp has two inputs, which could carry a common level
of input signal. Denoting byvd and vcm the differential-
and common-mode signal components, we may write the
respective output voltages from the opamp byvdout = Avvd
andvcmout = Acmvcm, whereAv andAcm are the differential-
and common-mode voltage gains, respectively. Then CMRR
is defined as (referring to Fig. 1) [1]
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i.e., the ratio between the differential-mode gain and the
common-mode gain.
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Fig. 1. Measurement of CMRR.

Recently there have appeared a number of works studying
the design techniques for improving biopotential signal ac-
quisition capability of low-voltage/low-power circuits,among
them CMRR enhancement techniques are of special interest
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[2]–[6]. Due to the weak fluctuation of biomedical instrumen-
tation, common-mode noise is one of the most critical issuesin
biomedical circuit design. Facing the increasing uncertainty in
analog circuit design and decreasing supply voltage, advanced
circuit design techniques are needed to achieve a better CMRR
target.

Several circuit design techniques are proposed in the liter-
ature for improving CMRR performance, such as leveraging
trimming, auto-zeroing, and chopping. However, these tech-
niques have limited capability in capturing the most sensitive
circuit element pertinent to CMRR. CMRR-sensitive elements
require more attention during layout design.

Since CMRR is measured from small signal excitations,
its analytical property with respect to circuit element canbe
deduced by symbolic analysis. Recently, the application of
the notion ofsymbolic sensitivityhas been explored in several
papers [7], [8]. It is advantageous in quickly identifying the
most sensitive circuit elements regarding the selected design
metrics. It has also been demonstrated thatsymbolic sensitivity
is an intuitive approach to CMOS circuit sizing.

In this paper we apply the same technique for improving
CMRR property of opamp concerning the mismatch of the
externally connected peripheral circuit elements. We found
in experiment that symbolic sensitivity analysis could quickly
identify the most CMRR-sensitive element and its reference
value; with this information designer would pay special atten-
tion to such elements during layout design.

The basic principle for symbolic computation of CMRR and
its sensitivity is introduced in section II. A design example is
analyzed by using the proposed method for CMRR optimiza-
tion, and the efficiency is compared to the Monte Carlo method
in Section III. Section IV concludes the paper.

II. SYMBOLIC CMRR CALCULATION AND SENSITIVITY

The calculation of CMRR involves two input-output (I/O)
pairs: 1) From the differential signal input to the opamp output
with the gainAv and 2) from the common-mode perturbation
to the opamp output with the gainAcm. Both gains are small-
signal gains and are computable by running AC analysis with
a Spice simulator. But Spice simulation does not provide
analytical information. Obtaining analytical dependenceon the
circuit parameters must resort to a symbolic circuit simulator
[9]. Since symbolic sensitivity computation is an involved
procedure, a particular mechanism for symbol representation
and manipulation can make great difference in computational



efficiency. The work [10] has made comparison on this issue
and justified that the GPDD (Graph-Pair Decision Diagram)
symbolic method [11] is most suitable for such computation.

As an illustration of the basic principle, let us take a look
at the example shown in Fig. 2, where a Binary Decision
Diagram (BDD) on the right-hand side is a symbolic represen-
tation of the I/O relation of the circuit beside. This BDD (with
a particular name GPDD reflecting its underlying algorithm)
can be constructed and saved in the computer memory with
excellent efficiency. The book [9] explains all the technical
details regarding the GPDD algorithm.
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Fig. 2. GPDD example.

The GPDD algorithm can easily deal with multiple inputs
and outputs as well. In its application to the symbolic com-
putation of CMRR we only need to consider two inputs and
one single output for the computation of the two gainsAv

andAcm that share the common output. Since both gains are
computed on the same circuit, the symbolic representationsfor
Av andAcm can share one GPDD in the computer memory,
which is a computational advantage by using GPDD.
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Fig. 3. GPDD for CMRR analysis, wheresk ’s stand for the directed edge
signs.

Both I/O ports involved in CMRR belong to voltage con-
trolled voltage sources (VCVS) ports, whose transfer functions
are denoted byX−1

Av andX−1
cm (note that GPDD construction

requires port inversion), whereXAv andXcm are two symbols
in the shared GPDD. By construction, they are placed closest
to the root as illustrated in Fig. 3. The verticesNAv, Ncm and
D in the diagram have offspring vertices not shown in the
figure. We denote byf(V ) the symbolic function represented
by the sub-diagram pointed by a generic vertexV . Then the
two gains involved in CMRR computation can be calculated

symbolically as follows:

Av = 1
XAv

= −s1s3s4
f(NAv)
f(D) (2)

Acm = 1
Xcm

= −s2s4
f(Ncm)
f(D)) (3)

where thesk ’s are the diagram edge signs [9].
By the CMRR definition (1), it then holds that

CMRR = s1s2s3
f (NAv)

f (Ncm)
. (4)

So far we have gone through the computation flow of ob-
taining a symbolic representation of CMRR. We emphasize the
a symbolic CMRR is a Binary Decision Diagram with vertices
representing the circuit symbols. Any symbol is traceable
by traversing the diagram from the root. Another important
property is that no vertex in the diagram involves composite
symbol (i.e., arithmetic expression of basic symbols). This
property is particularly meaningful for sensitivity computation.

Sensitivity is a good measure for pinpointing those few
parameters that are worth most attention in the circuit physical
design stage. When it is applied to CMRR, we are interested
in the effect of mismatch on the CMRR metric.

The sensitivity of a transfer functionH (s) with respect to
an arbitrary parameterp is typically defined by the following
normalized form:

Sens (H (s) , p) := lim
∆p→∞
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The symbolic expression in GPDD is composed of sum-
of-products with each product term containing basic circuit
parameters. As a result, taking derivative as the expression
∂H(s)
∂p

is extremely simple as explained in detail in [10].
Noting that CMRR is the ratio of two transfer functions, we

can readily verify that

Sens (CMRR, p) = Sens (|Av| , p)− Sens (|Acm| , p) (6)

Therefore, as long as the sensitivities of the two transfer
functionsAv(s) and Acm(s) with respect top are known,
the CMRR sensitivity is obtained directly.

III. E XPERIMENTAL RESULTS
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Fig. 4. Two-stage opamp with Miller compensation.

The proposed computation method for CMRR and its sensi-
tivity has been implemented in the GPDD software prototyping
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Fig. 5. Opamp with external capacitors.

system written in C++ in the authors’ laboratory. HSPICE
simulation results were used for comparison. Shown in Fig. 4
is a two-stage opamp sized with the TSMC 0.18µm CMOS
technology. We assume that four peripheral capacitors are
connected to the opamp in a typical application as shown in
Fig. 5. Fig. 6 shows a good agreement of the CMRR versus
frequency (up to 100MHz) computed by GPDD and HSPICE.
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Fig. 6. CMRR results of the two-stage opamp.

A. Optimization by CMRR Sensitivity
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Fig. 7. Evolutional sensitivity with respect to the variation of C3.
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Fig. 8. Evolutional CMRR with respect to the variation ofC3.

The recent paper [6] discussed impedance matching for
biopotential signal acquisition. That method did not consider
the influence of the opamp internal impedance (likeRz and
Cc in the compensation path connected to the opamp output)
on the determination of the mismatch factor between the pair
of capacitorsC2 andC3. The exact matching of them does
not mean the best CMRR unless in the situation of an ideal
opamp. By sizing the pair ofC2 and C3 identical with the
value 200 fF, the opamp only achieves a CMRR of nearly
70.29dB, which is not satisfactory yet.

Hence, in the experiment we report mainly a search of a
properC3 independent ofC2 to come up with a optimized
CMRR. Although sweeping ofC3 fulfils the role, here we
examine the advantage of guiding the search by symbolic
sensitivity. We show by evolutional running to reveal how the
sensitivity helps us reduce the blindness in the search.

We computed a bundle of sensitivity curves of CMRR by
increasingC3 with a grid of percentages. As seen from Fig. 7,
the sensitivity curves exhibit an interesting phenomenon.As
C3 is increased from its nominal200fF , the level part of the
sensitivity curve starts to rise but remains positive. At the grid
of 2.5% it reaches the topmost; as we further increaseC3 to
3.5% it flips over to the bottommost negative sensitivity. We
did another run at the grid of3.0% to get a nearly optimum
CMRR at100.5dB. The evolutional numbers are recorded in
Table I where the row with underscore corresponds to the
optimized result.

Remark 1:Computing numerical sensitivity of CMRR by
HSPICE is also possible, but would require two runs for each
parameter value followed by relative difference calculation.
Comparatively, symbolic CMRR sensitivity computation by
GPDD is analytical and 100% accurate except for numerical
roundoff errors.

B. Comparison to Monte Carlo

Mismatch also can be examined by Monte Carlo simulation,
but it is more time-consuming and lacks insight. For example,



TABLE I
CMRR OPTIMIZATION PROCESS

Increment of C3 Sens (CMRR, C3) CMRR (dB)
0 32.313 70.3

1% 48.211 73.7
2% 93.1415 79.3

2.5% 172.226 84.6
3% 1.082K 100.5

3.5% -255.656 88.0
4% -114.933 81.0

4.5% -74.381 77.2
5% -55.118 74.5
6% -36.486 70.8
10% -15.925 63.3

we may check the random mismatch between the input capac-
itor pair Cin1 andCin2 and the other capacitor pairC2 and
C3 by Monte Carlo sampling. The Monte Carlo simulation
result shown in Fig. 9 shows the normalized histogram of
1,000 samples for the CMRR measure with respect to one
of the four capacitors. It took nearly 547.031 millisecondsby
HSPICE to calculate 1,000 samples atf = 50Hz for each
circuit component with 0.2% mismatch. Table II shows more
statistical details. As a comparison, the sensitivity computation
using GPDD took only 3.001 milliseconds on average. We
observe that the sensitivity results correlate very well with
the Monte Carlo variance. There is no doubt that sensitivity
analysis is a much faster way for mismatch effect examination.

The Monte Carlo result shows that the mismatch of the input
pair of capacitorsCin1 andCin2 affects more on the CMRR
performance, calling for more attention during layout design.
This is confirmed by the sensitivity result computed by GPDD
as well, see Fig. 10.
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Fig. 9. Monte Carlo results of|Acm(s)| at f = 50Hz with 1,000 runs.

IV. CONCLUSION

This article presents a symbolic sensitivity approach to
CMRR optimization over capacitive mismatch. This work is
motivated by the rising needs in opamp design for biopotential
signal acquisition. The proposed technique is expected to
be applicable to other areas of sensor node circuit design

TABLE II
COMPARISON OF PARAMETER VARIATION BY RUNNINGMONTE CARLO

ANALYSIS AND SENSITIVITY AT 50HZ WITH 0.2%ELEMENT MISMATCH.

Element Mean Std. Var |Sens (Acm)|
Cin1 30.02m 1.298µ 37.30
Cin2 29.98m 1.415µ 38.23
C2 30.01m 0.887µ 31.33
C3 30.01m 0.900µ 32.31
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Fig. 10. Common mode gain sensitivity computed by GPDD.

where signals are weak and power supplies are limited and
noisy. Future work will pay more attention to the automatic
optimization issue based on the notion of symbolic sensitivity.
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