
Incremental Symbolic Construction for Topological
Modeling of Analog Circuits

Hanbin Hu1, Guoyong Shi2 and Yan Zhu3

School of Microelectronics, Shanghai Jiao Tong University, Shanghai 200240, China
Email: 1huhanbinnew@hotmail.com,2shiguoyong@ic.sjtu.edu.cn,3newzhuyan@gmail.com

Abstract—Symbolic methods for analog circuit analysis and
modeling have been well studied. However, little is known on
how to create symbolic models incrementally while a circuit
topology is being modified. This paper proposes an incremental
symbolic construction method applicable to incremental circuit
topology change based on a previously developed data structure
called GPDD (graph-pair decision diagram). An incremental
GPDD algorithm (iGPDD) is proposed. It is demonstrated exper-
imentally that with proper symbol ordering the iGPDD method
outperforms the restarted GPDD construction method.

Index Terms—Binary decision diagram (BDD), graph-pair
decision diagram (GPDD), incremental construction, infinite
symbol, symbol ordering.

I. I NTRODUCTION

Over half a century symbolic circuit analysis has been
studied mainly for behavioral modeling and design insights
[1]–[3]. The introduction of binary decision diagram (BDD)
to symbolic analysis of analog circuits has made it possibleto
build faster and more compact symbolic representations [4]–
[6].

Analog integrated circuit design must deal with a variety
of design goals simultaneously. It is sometimes necessary
to change the circuit topology for realizing certain design
goals. Traditionally, the designers would start from choosing
a topology template, then modifying the template by adding
or subtracting certain substructures in hope of achieving the
design goals. It is highly desirable to develop a computerized
tool to automate such topological exploration. However, such
efforts are rarely reported in the literature except for therecent
work [7] which proposed a symbolic signal-flow method for
systematically comparing circuit topologies to identify the
performance differences.

This paper presents an incremental symbolic construction
method for analog circuits by the means of Graph-Pair Deci-
sion Diagram (GPDD) representation explained in Section II.
In Section III a symbol reordering strategy is presented for
more compact GPDD representation when multiple elements
are inserted successively. Preliminary experimental results are
presented in Section IV with a conclusion made in Section V.

II. I NCREMENTAL CONSTRUCTIONALGORITHM

A. Review on GPDD

The GPDD algorithm developed in [5] is a result of reformu-
lating the two-graph algorithm [1] by incorporating a BDD-

∗This research was supported by the Natural Science Foundation of China
(NSFC Grant No. 61176129).

based representation. Taking the advantage of data structure
sharing offered by BDD, the tree-pair enumeration requiredby
the two-graph method is reformulated into a form of graph-
pair reduction, which processes a linearized circuit element-
wise. Given an arbitrary linear circuit element, two decisions
are made: one substituting the element by a nullor, which is
equivalent to letting the element symbol take infinity while
the other substituting the element by azero element, whose
meaning will be explained. While a pair of graphs is reduced
by edge-pairs, all common pairs of sub-graphs are shared and
saved in a BDD. During graph-pair reduction, each collapsing
of edge-pair is associated with a sign, which is stored with the
decision arrows in the GPDD [5].

When all possible graph-pair reduction paths are exhausted,
a data structure as illustrated in Fig. 1 will be created, which
is called a GPDD. In a GPDD, all passive RLC elements
appear in admittance form for manipulation, while all the
rest dependent elements have their gainsEk, Fk, Gk, and
Hk manipulated as the symbols. Depending on the element
types, a set of binary graph-edge reduction rules have been
established in [5]. Whenever a pair of graphs is reduced into
a pair of single nodes, the reduction path is completed and
terminated at theOnevertex, while all the rest non-completed
reduction paths are terminated at theZerovertex. By scanning
a path from the GPDD root to the terminal vertexOne, a
symbolic product terms is generated by collecting all symbols
and signs encountered along the path, excluding those symbols
from which a dashedarrow emanates. More details on the
GPDD data structure can be found in [5].

G

X

F

E

G 3

1G

1 0

4
G

0

0

G 3

1

Fig. 1. GPDD example.

A GPDD is a bottom-up recursive computation data struc-
ture that performsmultiplicationby a solid andadditionby a
dashedarrow. The computation starts from the two terminal
vertices (One and Zero), and steps upward until the root is
reached. The input-output (I/O) transfer function of a circuit
is symbolized by a dependent source in GPDD and represented
by a special symbolX , which always appears at the GPDD
root. The GPDD recursion would generate a sum-of-product
(SOP) expression at the GPDD root. For the example GPDD
shown in Fig. 1 we get the followingsignedSOP expression

XFG1(E − 1)−G1G3(E − 1) +G3G4 = 0, (1)

which must be equal to zero according to the theory estab-
lished in [5]. The terms in this expression can be divided
into two parts: those multiplied byX and those not. This
fact has an interesting circuit interpretation which does not
come with other symbolic methods. Those terms multiplied
by X is actually an SOP representation for the circuit when
theX element is replaced by anullor. On the other hand, those
terms not multiplied byX is an SOP for the circuit with theX
element set to zero. The detailed branch operation for making
an element zero depends on the element type, which will be
explained a little later. A symbolic expression for1/X is then
derived by dividing these two parts [5].

The above statement leads to the following proposition:
Proposition 1: Suppose a circuit has an arbitrary two-port

elementK of type E, F, G, or H, which might degenerate to
one-port. The symbolic product terms of this circuit involve
two parts: all terms in one part are multiplied byK while
all terms in the rest are not multiplied byK. Those terms in
the first part (after removingK) can be generated from the
original circuit by replacing theK element by a nullor. Those
terms in the second part can be generated by setting theK
element to zero.

By setting an elementK to zero, it means that the branches
associated with the element in the circuit are operated in
accordance to the element type:E0 (open VC; short VS),
F0 (short CC, open CS), G0 (open VC; open CS), andH0

(short CC; short VS), where the subscript ‘0’ indicates the zero
element of that element type. The listed branch operations are
justified in [5].

We point out that setting a symbol value toinfinity or
zero can be used to alter the circuit topology, whereas the
corresponding symbolic expression can be derived simply by
slightly modifying the existing GPDD structure. This observa-
tion is fundamental to our incremental construction algorithm.

Suppose a GPDD has been created involving symbolK.
Multiple GPDD vertices could be associated to the same
symbol K (see Fig. 1). For convenience we use subscript
indexed symbols to differentiate the multiple vertices such as
Ki, i = 1, 2, · · · ,mK , wheremK is the multiplicity of symbol
K.

If we let K = ∞ (called infinite symbol), the GPDD can
be simplified by keeping thesolid arrow emanating from all
K vertices while terminating at zero all thedashedarrows
emanating from the verticesKi. In case the symbolK is

missing in a path, the path must be terminated by a solid arrow
to zero as well. Similarly, ifK = 0 (called zero symbol),
the GPDD can be simplified by keeping thedashedarrow
emanating from theK vertices while terminating at zero all
the solid arrows from the verticesKi. In case the symbol
K is missing in a path, that path remains unchanged. The
cost of such operations is no more thanO(|GPDD|), where
|GPDD| denotes the size of a created GPDD.

The incremental symbolic construction algorithm is intu-
itively a reversed process of the above GPDD simplification
procedure.

B. Incremental Algorithm

We shall develop an element insertion procedure in this
section by considering the insertion of a singleG-type element
first. The insertions of other element types can be performed
analogously.

Suppose we would like to insert an elementG into a circuit
at a selected port(a, b). The port(a, b) could be existing or
created by tearing a node apart. The insertion procedure is
motivated by the following intuitive discussion: Suppose the
elementG exists in the circuit and a GPDD has been created
with the G-symbol ordered the first, the I/O symbol X the
second, and so on. Shown in Fig. 2 is the top part of such a
GPDD.

G

ss4

A B C D

s6s3

s2s1

X X

5

Fig. 2. GPDD with the symbolG at the root. Thesk ’s are signs.

+

BC

5ss2
s4s1

s6s2s3s1

G G

X

A D

+

Fig. 3. GPDD with the symbolX moved to the root after swappingG and
X.

Let the symbolic function at the rootG be f . We denote
the two functions at the twoX verticesf |G=∞ and f |G=0

respectively forX pointed by the solid arrow emanating from
G and the dashed arrow fromG. We consider the following
two cases:(i) If G is inserted by tearing a node, then the
reduced circuit associated tof |G=∞ becomes the original
circuit because the split apart nodes are merged again.(ii) If
G is inserted by connecting to a port(a, b), then the reduced

circuit at fG=0 becomes the original circuit because the port
is restored.

Thinking reversely, if a GPDD for a circuit has been created
before the insertion ofG. Then, if G is inserted by tearing a
node apart, then the subGPDD atf |G=∞ (see the left framed
part in Fig. 2) can be reused (i.e., need not be reconstructed).
We only need to construct the other subGPDD atfG=0 (see
the right framed part in Fig. 2), which corresponds to a circuit
with the selected node torn apart (open port). The second case
for insertingG at an existing port(a, b) is symmetric to the
first case in that the right framed subGPDD in Fig. 2 can
be reused while the left framed subGPDD needs to be newly
created with the selected port shorted.

By constructing the complementary subGPDD as mentioned
above, the GPDD for the increased circuit can be assembled
as shown in Fig. 2 with the symbolG still at the root. If we
want to move theX symbol to the root (for the convenience
in GPDD evaluation etc.), we may swap the symbolsG and
X to get a GPDD shown in Fig. 3. Along with the swapping,
the arrow signs have to be modified accordingly meanwhile
the two vertices marked “B” and “C” are switched. It is easy
to verify that the two GPDDs shown in Figs. 2 and 3 are
equivalent.

The incremental symbolic construction algorithm is now
summarized.

Incremental GPDD (iGPDD) Algorithm:

Input: A circuit ckt with specified I/O (denoted by symbol
X). Select a port to insert a new elementK in ckt
without changing the I/O. Let theckt be represented
by graphG. Suppose a GPDD for the graphG has
been created.

Output: A new GPDD for ckt with the new elementK
inserted.

Step 1. Create a graphG∞ for the case where the insertion
port is connected by a nullor; create another graphG0

for the case where the port is substituted by thezero-
element of E, F, G, or H-type. (Note that connecting
a nullor to a one-port is equivalent to short-circuiting
that port.)

Step 2. Check whetherG∞ or G0 is identical to the existing
graphG. If identical, reuse the existing GPDD for
composing the new GPDD.

Step 3. Create a GPDD for the graphG∞ or G0 unequal to
G while using the existing hash table for sharing. In
case bothG∞ and G0 are unequal toG, we create
two GPDDs for them by sharing the existing hash
table.

Step 4. Suppose the elementK has been inserted in theckt.
Reduce the graph once by the elementK to fix
the two arrow signss1 and s2 in Fig. 2 (with G
replaced byK). Keep the rest of the GPDD arrow
signs emanating fromX ’s.

Step 5. Swap the symbolsK and X as shown in Fig. 3
(with G replaced byK) by modifying the signs
accordingly.

If multiple circuit elements need to be added to a circuit,
the aboveiGPDD algorithm is invoked for multiple times.

III. SYMBOL REORDERING

In our initial implementation of theiGPDD algorithm, we
always place the newly inserted symbol at the GPDD root,
which results in a symbol order specified by the insertion
order. Such an arbitrary order might lead to a large GPDD
size, because the GPDD size in general is highly sensitive to
the chosen symbol order. In practice, it is suggested to adopt
a heuristic order as recommended in [5]. In the initial version
of iGPDD we adopted a strategy calledsymbol order sifting
whenever a new element is inserted.

SupposeW1 and W2 are two neighboring symbols in a
GPDD. Swapping the symbolsW1 and W2 can be written
by the following arithmetic expressions which hold trivially
(assuming all signs are absorbed by thef() functions)

ftop = W1[W2f(A) + f(B)] + [W2f(C)+ f(D)]

= W2[W1f(A) + f(C)] + [W1f(B)+ f(D)].
(2)

We see clearly that the factors off(B) andf(C) have been
switched in the above two expressions.

Two special cases must be considered for the sake of
implementation. Due to thezero-suppressionin GPDD com-
paction, some vertices connected tozero by solid arrows can
be suppressed (removed) from GPDD [5]. The two cases are
illustrated in Fig 4, whose equivalences are obvious.

(a)

(b)

Fig. 4. Special cases of symbol swapping: (a) Case 1:W2 is zero-suppressed
following the solid arrow fromW1 before swapping. (b) Case 2:W2 is zero-
suppressed following the dashed arrow fromW1 before swapping.

We point out that swapping two neighboring symbols only
affects the GPDD connection between two neighboring layers
with the swapped symbols without changing the rest GPDD
structure. Hence, the runtime overhead of swapping is not
serious.

Successively swapping multiple symbols is calledsifting, a
procedure proposed by Rudell for ordered BDD implemen-
tation [8]. The basic idea of sifting goes as follows: Pick a
symbol in BDD, sift it downward or upward until a relatively
small BDD results.

Since iniGPDD we always place the newly inserted symbol
at the GPDD root, only downward sifting is necessary until a
relatively small GPDD is obtained.

IV. EXPERIMENTAL RESULTS

A simple RC integrator is shown in Fig 5 (on the left)
together with a macromodel for the operational amplifier
(opamp) (on the right). We successively add the circuit ele-
ments in the macromodel to test the efficiency of incremental
construction. The macromodel elements are the finite gain
Egain, the buffer gainEbuf , the input and output resistances
Rin and Rout, andRp1 and Cp1 defining a pole, They are
inserted incrementally in the written sequence.

+
-

+
-

IN+

IN-
OUT

Vin
Vout

R2 R1

C1

Rin
Egain

Rp1

Cp1

Ebuf

Rout

Fig. 5. RC integrator for testing the incremental algorithm.

The CPU time for insertion and the GPDD size growth
are listed in Table I. The insertion of each symbol takes a
small amount of time, but the time grows as more symbols
are inserted. The accumulated incremental construction time
is 1,522 µs. For comparison, we also measured the non-
incremental construction time by creating a GPDD including
all macromodel symbols with the same symbol order; it
took 1,736µs with the GPDD size 21. Because this circuit
is small, the incremental construction outperforms the non-
incremental construction. For large circuits, a complete run of
all incremental constructions for inserting a set ofN elements
would normally be slower than one run of GPDD construction
by including theN elements altogether, but faster thanN runs
of restarted GPDD constructions.

TABLE I
INCREMENTAL INSERTION RESULTS FOR THERC INTEGRATOR.

Inserted symbol Insertion time (µs) GPDD size
(Starting circuit) – 5

Egain 34 8
Ebuf 44 12
Rin 54 14
Rout 119 19
Rp1 36 22
Cp1 259 27

Next we tested the incremental construction with sifting. By
sifting, every inserted symbol is rearranged to a better position
downward in the symbol list. A bandpass filter shown in Fig
6 is used for this experiment, in which we modified the three
opamp models by inserting additional macromodel elements:
first inserting bothEgain andEbuf ; then inserting bothRin

andRout; and finally inserting bothRp1 andCp1 to all three
opamps.

Listed in Table II is a comparison of three different test
settings. The first row shows the GPDD size and construction
time for the whole circuit including all macromodel elements
(i.e., non-incremental construction). The symbol order came

vin

vout

Fig. 6. The bandpass filter containing three opamps for the second test
circuit.

from a heuristic ordering. This result is used for comparison to
the other two tests listed in the next two rows. The incremental
construction without sifting (the 2nd row) takes less time than
that with sifting (the 3rd row), but the GPDD size is much
larger as expected.

TABLE II
COMPARISON OF INCREMENTAL CONSTRUCTION WITH SIFTING.

Test case GPDD size Total time (ms)
Non-incremental w. pre-order 160 31.00

Incremental w/o sifting 2141 1042.70
Incremental with sifting 326 1334.30

V. CONCLUSION

An incremental symbolic method for tracing analog circuit
topology modification has been proposed. The algorithm has
been developed as a simple extension of the existing GPDD
algorithm developed for topological analog network analysis.
By taking the advantage of a distinguished property owned by
GPDD, namely, all circuit elements are directly manipulated as
symbols in GPDD, modifying an already constructed GPDD
data structure to trace incremental circuit topology change
is a feasible technique. In the future we shall investigate
other better insertion strategies by approaches such as modular
insertion to improve the efficiency and interactiveness.

REFERENCES

[1] P. M. Lin, Symbolic Network Analysis. New York: Elsevier, 1991.
[2] F. V. Fernández, A. Rodrı́guez-Vázquez, J. L. Huertas, and G. Gielen,

Eds., Symbolic Analysis Techniques – Applications to Analog Design
Automation. New York: IEEE Press, 1998.

[3] M. Fakhfakh, E. Tlelo-Cuautle, and F. V. Fernández, Eds., Design of
Analog Circuits through Symbolic Analysis. Oak Park, IL, USA:
Bentham Science Publishers (e-Books), 2012.

[4] C. J. R. Shi and X. D. Tan, “Canonical symbolic analysis oflarge analog
circuits with determinant decision diagrams,”IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 19, no. 1, pp. 1–18,
January 2000.

[5] G. Shi, “Graph-pair decision diagram construction for topological sym-
bolic circuit analysis,”IEEE Trans. on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 32, no. 2, pp. 275–288, February 2013.

[6] ——, “A survey on binary decision diagram approaches to symbolic
analysis of analog integrated circuits,”Analog Integrated Circuits and
Signal Processing, vol. 74, no. 2, pp. 331–343, 2013.

[7] C. Ferent and A. Doboli, “Symbolic matching and constraint generation
for systematic comparison of analog circuits,”IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, vol. 32, no. 4, pp. 616–
629, 2013.

[8] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” inProc. ACM/IEEE Int’l Conf. on Computer-Aided Design
(ICCAD), 1993, pp. 42–47.

